

[bookmark: top]

	
			[image:]	PDFsharp & MigraDoc Foundation
PDFsharp - A .NET library for processing PDF & MigraDoc Foundation - Creating documents on the fly

	

	
			
				[image: *] Login [image: *] Register
					
				
				[image: *] FAQ
				 [image: *] Search
			

	

	
				It is currently Wed Apr 03, 2024 12:40 pm

	

	
	
		View unanswered posts | View active topics
		
	

	

	

		
			Board index » Community » My PDFsharp/MigraDoc Project

			All times are UTC

		

	

	Using MigraDoc in a simpler way - "MigraDoc Made EZR"

	Moderator: Stefan Lange

		
		[image: Post new topic] [image: Reply to topic]
			 Page 1 of 1
	 [1 post] 	

		
				
				
					Previous topic | Next topic

		

		Author	Message
	
				[bookmark: p9412]
				TH-Soft
				
					 Post subject: Using MigraDoc in a simpler way - "MigraDoc Made EZR"
[image: Post]Posted: Tue Sep 29, 2015 8:04 am

			
	
					[image: Offline]
	PDFsharp Expert
	[image: User avatar]

				
					
Joined: Sat Mar 14, 2015 10:15 am
Posts: 909
Location: CCAA
				

				
					
					

						Using MigraDoc was always easy, of course.

Currently I am working on a library that makes using MigraDoc even easier. Working title is "MigraDoc Made EZR". In this post I show you some examples.

It is tradition to start with a "Hello, World!" program when learning a new programming language. "MigraDoc Made EZR" is not really a programming language, but here is the "Hello, World!" sample:
Code:
namespace MigraDocMadeEZ
{
 class Program
 {
 static void Main()
 {
 // Instantiate MigraDocMadeEZR.
 var mez = new MigraDocMadeEZR();
 // Add the famous text.
 mez.AddParagraph("Hello, World!");
 // Create a PDF and open it in the default viewer.
 mez.MakePdf("HelloWorld.pdf", true);
 }
 }
}

And that is the complete contents of the Program.cs file for my console application.

The basic ideas behind "MigraDoc Made EZR":

	One class giving access to the majority of the functions you need often, easily selectable with Intellisense
	Describe the document with easily readable code without tons of variables to store elements
	Easy handling for tables, images, styles, ...

Here is how you change a built-in style when using MigraDoc routines directly:
Code:
var style = document.Styles[StyleNames.Heading1];
style.Font.Name = "Arial";
style.Font.Size = 20;
style.ParagraphFormat.SpaceAfter = 6;
style.ParagraphFormat.SpaceBefore = 6;

And here we do the same using "MigraDoc Made EZR":
Code:
mez.Style(StyleNames.Heading1)
 .Font("Arial", 20)
 .SpaceAfter(6)
 .SpaceBefore(6);

OK - it only saves a single line. But I think the lines are more readable. Every change you make to a style object returns the same style object, allowing you to chain together all needed changes in a single statement. This principle is also used when dealing with tables, images, and other objects.

Adding new styles is similar to changing existing styles. Here I create a new style for table headings and set the font to bold. The name of the font is defined as a constant so I have the literal only once in my source code.
Code:
mez.AddStyle(MyStyles.TableHeader)
 .Bold(true);

The code that creates the table. The row in the middle has a fixed width of 3 cm, the remaining page width will be assigned to the other two columns with a relation of 2:5, indicated by the star "*" which behaves similar to WPF.
Code:
mez.AddTable("2*|3cm|5*")
 .BorderWidth(0.5)
 .Padding(5);

When I add the heading row of the table, I have to mark it as heading and assign my heading style.
Code:
mez.AddRow("Name", "Value", "Description")
 .Heading(true)
 .Style(MyStyles.TableHeader);

I don't have a style for the table body, so I simply add the data I need.
Code:
mez.AddRow("Beetle", "140 km/h", "The car that runs and runs.");
mez.AddRow("Spider", "258 km/h", "A bit more expensive.");

If you want to mix different font styles in a table cell, things are a bit more complicated.
Here's a routine that creates a paragraph with bold and regular text.
Code:
static MezParagraph TableCellHelper(string bold, string normal)
{
 // Create a paragraph, add string "bold" as bold text, add string "normal" as regular text.
 return new MezParagraph()
 .AddFormattedText(new MezFormattedText(bold).Bold(true))
 .AddText(" " + normal);
}

And the routine at work:
Code:
mez.AddRow("Beetle", TableCellHelper("140", "km/h"), "The car that runs and runs.");
mez.AddRow("Spider", TableCellHelper("258", "km/h"), "A bit more expensive.");

Can this be made easier? Yes, it can. I have the idea of supporting some mark-up in the strings passed to AddRow().

(To be continued.)

Best regards
Thomas
(Freelance Software Developer with several years of MigraDoc/PDFsharp experience)

					

							
							
							

					

			
	Top	 [image: Profile]
 [image: Reply with quote]

	[image:]

		Display posts from previous: All posts
1 day
7 days
2 weeks
1 month
3 months
6 months
1 year

 Sort by Author
Post time
Subject

 Ascending
Descending

	

		
		[image: Post new topic] [image: Reply to topic]
			 Page 1 of 1
	 [1 post] 	

	
			Board index » Community » My PDFsharp/MigraDoc Project

			All times are UTC

		

	

		Who is online

	Users browsing this forum: No registered users and 2 guests

		You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

	Search for:

	
	

		Jump to: Select a forum

PDFsharp & MigraDoc
 Announcements
 Support
 Bug Reports
 Feature Request
 Sample Code
Community
 My PDFsharp/MigraDoc Project

	

	
 Privacy Policy, Data Protection Declaration, Impressum

 Powered by phpBB® Forum Software © phpBB Group
	

